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The Analemma Dilemma
Solving visualisation issues in 
astronomy using 3D graphics

Hannah Bull

This project focuses on visualisation problems 
involved in modelling astronomical 
phenomena, with particular reference to 

how the analemma can be explained and depicted 
������ ���������� Ƥ�����Ǥ� ��� ������������ ��������
factors and adjustments, the simulated analemma 
can be graphed with high accuracy through 
computer simulations. These are illustrated with 
two example locations in Singapore and Athens.

The motion of the sun relative to the earth is a 
result of the combined effects of the rotation of the 
earth and the revolution of the earth around the sun. 
The rotation axis of the earth is tilted at approximately 
23.45 degrees to the plane of the earth’s orbit around 
the sun, and the revolution of the earth around the 
sun follows an elliptical path with eccentricity 0.0167. 
These irregularities in revolution and rotation allow 
for variations in the length of daylight and changes 
in sunrise and sunset times. The path of the sun at a 
specific time and location over a period of one year is 
referred to as the analemma. This phenomenon can 
be easily visualized and detected from the earth; the 
only difficulty is that it requires a whole year to do so. 
Figure 1 shows one such photographic record of the 
analemma, in which a photograph of the sun has been 
taken at 8:30am each morning.

Modelling the analemma requires the ability to 
determine the position of the sun in the sky when 
given a time, date, and location. Graphical represen-
tations of the analemma are important, as it is not a 

phenomenon that can be seen at any single moment 
in time. The use of such graphics serves as a means 
of explaining related and more familiar phenomena, 
such as why the sun rises and sets at different times, 
even on the equator, and how sundials can tell the date 
as well as the time. To model the analemma, we use 
Mathematica 7.0. The calendrical and astronomical 
algorithms required for these calculations come from 
the package Calendrica, written in Lisp by Edward M. 
Reingold and Nachum Dershowitz and converted for 
use in Mathematica by Robert C. McNally (2009).

A difficulty arises in accurately depicting the ana-
lemma in programmable figures, such that the viewer 
is easily able to understand the phenomenon. Prob-
lems that arise from the depiction of the analemma are 
also common to models of other astronomical phe-
nomena. Good astronomical graphics strive toward 
realism and scientific accuracy, although strategic 
modifications to scale and viewing position are often 
unavoidable. An external view of the universe is useful 
for depicting large-scale solar motions, but is limited 
in its applications for usefully depicting the analem-
ma. Corrections in viewpoint allow for the creation of 
graphical models, which resemble real photographs of 
the analemma. It is possible to create both realistic and 
accurate models of the analemma, allowing for better 
visualisation and understanding of this phenomenon. 
It is useful to model the analemma using program-
mable figures, as this will allow for easy adaptation of 
models for the analemma as seen at different latitudes 
and times of day.

Generally, celestial bodies are either projected onto 
a sphere, such as the celestial sphere, or onto a plane 
by using one of numerous spherical projections. The 
earth lies at the centre of the celestial sphere and stars, 
planets, and other bodies are projected onto the sphere 
itself. This is useful in explaining many phenomena 
but is also an unrealistic depiction of space. A typical 
celestial sphere model is depicted in Figure 2 below.

Figure 1. 8:30am analemma at 46°32’N (di Cicco, 
1978-9).

Figure 2. Celestial Sphere Model.
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The celestial equator is a projection of the earth’s 
equator onto the celestial sphere. Similarly, latitudinal 
and longitudinal lines on the celestial sphere 
correspond to the projection of the earth’s latitudinal 
and longitudinal lines. The ecliptic traces the apparent 
path of the sun throughout the year and lies at an 
angle of approximately 23.45 degrees to the celestial 
equator due to the tilt of the earth’s axis. The points 
where the sun crosses the celestial equator correspond 
to the vernal and spring equinox. On these dates at a 
location on the equator, the sun can be seen directly 
overhead. 

Although this image of the imaginary celestial 
sphere is practical for explaining the apparent path 
of the sun, the first fundamental problem with this 
diagram is that nobody has even witnessed the sun’s 
motion from this angle. The motion of the sun 
across the sky over one year, as seen from the earth, 
is dependent on latitude and appears very different 
from this depiction based on an external perspective. 
Another significant problem with this image is that 
it can be easily confused with the apparent motion 
of the sun throughout the day. This model of the 
celestial sphere also does not display another key 
factor contributing to the analemma’s shape – the 
eccentricity of the earth’s orbit around the sun.

While it is very easy to place the analemma on 
the celestial sphere in this manner, it is also not very 
useful in explaining the phenomenon. The shape and 
angle of the analemma are dependent on the latitude 
of the viewer and the time of day. Figure 3 shows the 
appearance of the analemma for a viewer at 3pm at 
20 degrees north, projected onto the celestial sphere. 
Projecting an image of the analemma at a given 
latitude and time onto a celestial sphere is misleading, 
because it implies that the analemma has a fixed angle 

and location in the sky for all viewers. Furthermore, 
it may be confusing to note that in such diagrams 
the celestial sphere is not of the same orientation of 
the celestial sphere as shown in Figure 3. The celestial 
equator is no longer marked; rather, the horizon is for 
a viewer at 20 degrees latitude at a given time of day.

Explanations of the analemma using an external 
view of the celestial sphere are, as a result of these 
issues, quite limited. In order to produce useful images 
of the analemma, it is essential to attempt to depict 
the analemma realistically. A more effective means of 
depicting the analemma is to ‘open up’ the celestial 
sphere and to view the analemma and the celestial 
sphere from the inside, as it would be seen from earth.

Explanation of the Analemma through 
Programmable Figures 

Depictions of the Sun’s Declination

The declination of the sun is the angle it makes with 
the plane of the celestial equator. At the equinoxes, the 
sun’s declination is 0 degrees and at the summer and 
winter solstices, maximum and minimum declinations 
are reached at ±23.45 degrees. The declination of the 
sun can be visualized by comparing the sun’s path 
along the ecliptic with a path along the celestial 
equator. The mean sun refers to a fictional sun that 
travels across the celestial equator. This is equivalent to 
the sun’s motion if the earth were not tilted and if its 
revolution around the sun were circular. The true sun 
follows the path of the ecliptic, tilted at 23.45 degrees 
to the celestial equator.

The graph of the declination angle į of the sun 
over one year is a sine function involving the sun’s 
maximum and minimum declination and the true 
sun’s longitudinal position Ȝ (in degrees) on the 
celestial sphere. The sun’s longitudinal position may 
be extracted from a table or can be reproduced from 
astronomical algorithms (Meeus, 1998).

Plotting the declination angle į against the true 
sun’s longitudinal position Ȝ produces the following 
graph, where the horizontal axis is the path of the 
mean sun (į = 0).

Figure 4 is a projection of the ecliptic and the 
celestial equator onto a two-dimensional plane. At 
the times of the summer and winter solstices, the 
sun reaches its northernmost and southernmost 
extremes respectively, as is clearly depicted by the two-
dimensional graphic.

Figure 3. 3pm at 20°N analemma on a sphere 
(Teo, 2002).
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This diagram is a clear and simple representation 
of the path of the true sun along the ecliptic as 
compared with the path of the mean sun along the 
celestial equator; however, the lengths are incorrectly 
represented. By projecting this three-dimensional 
phenomenon onto a two-dimensional plane, the 
relative lengths of the celestial equator and the ecliptic 
become incorrect. The path of the true sun appears to 
be longer than the path of the mean sun and it seems 
that the true sun must travel further and faster than 
a sun following the celestial equator, although from 
the three-dimensional figure of the celestial sphere 
in section 1, it is clear that the path of the celestial 
equator is no longer than the ecliptic. The two suns 
travel at the same constant angular velocity around the 
earth over the same distance, but the relative velocity 
across lines of longitude differs. Initially, the mean sun 
travelling along the celestial equator would possess a 
greater velocity across lines of longitude. At the time 
of the June solstice, the two suns would be aligned and 
have equal longitude, but then the sun on the ecliptic 
would travel at a greater angular velocity across lines 
of longitude.

This key difference in velocity across longitudinal 
lines between the mean sun and the true sun is vital in 

correctly explaining the analemma’s figure-of-eight 
shape. The discrepancy between the mean sun and the 
true sun allows for changes in the length of daylight 
and changes in sunrise and sunset times. If the sun 
did not have differing velocities across the lines of 
longitude over the course of one year, then the position 
of the sun at the same time of each day would possess 
the same longitude on the celestial sphere. Similarly, 
if the sun did not have differing velocities across the 
lines of latitude, then the latitude of the sun on the 
celestial sphere would be the same at a specific time 
of each day. Images of the analemma show varying 
latitudes depending on time of year. 

A three-dimensional diagram using an open celestial 
sphere resembles that in Figure 5. This figure correctly 
represents the important knowledge that the path of 
the mean sun and the path of the true sun are of the 
same length. Although the diagram is not as simple 
as the two-dimensional version, it is a more accurate 
depiction of the true sun’s path as compared to that of 
the mean sun.

By knowing how far ‘behind’ or ‘in front’ of the 
mean sun the true sun is, a conversion can be made 
to determine the position of the true sun at a specified 

Figure 4. Path of the true sun (Teo, 2002).

Figure 5. Declination in three dimensions.
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moment given the position of the mean sun. The 
longitudinal velocity of the mean sun is 360 degrees 
per day or 15 degrees per hour. Using this fact, a 
relationship between longitudinal difference and time 
difference between the mean and true suns can be 
established. The relationship alleviates the need for a 
three-dimensional graphic, because time, as opposed 
to longitude, lives on two-dimensional axes.

Equation of Time

Until now, the models of the sun’s motion have 
ignored the fact that the earth’s revolution around 
the sun is elliptical. The physical discrepancy between 
the true and mean suns has already been graphically 
represented in the figures of the sun’s declination, and 
the two-dimensional graph of the difference in solar 
time of a tilted earth and mean solar time naturally 
has a similar sine curve shape. In the previous section, 
it was stated that the angular velocity of the mean sun 
is constant; however, because of the earth’s eccentric 
orbit, the earth must travel at varying speeds in order 
to maintain a constant angular velocity. The earth’s 
orbit has eccentricity 0.0167, which means it is almost 
circular. At the perihelion, the earth is closest to the 
sun and travels fastest; while at the aphelion, the earth 
is furthest from the sun and travels slowest.

Approximating the location of the sun assuming a 
circular orbit does not suffice for producing accurate 
images of the analemma. As with declination, the 
elliptical orbit can be compared with a simplified 
circular motion of the mean sun, and the physical 
discrepancy between these two suns can be expressed 
in units of time. The time difference between a sun 
travelling on a circular orbit and a sun travelling on an 

elliptical orbit also follows a sine curve, where there is 
no time difference at the perihelion and aphelion. 

The total time difference between a mean sun 
travelling along the celestial equator and the true 
sun travelling along the ecliptic in an eccentric orbit 
is given by the equation of time. This is shown in 
Figure 6. This is simply the summation of the two sine 
curves derived from the time difference between a sun 
on the celestial equator and a sun on the ecliptic and 
the time difference between a circular and elliptical 
orbit. The equation of time inputs the day of year and 
outputs time difference between the mean and true 
sun in units of fraction of a day. It enables a conversion 
between the position of the mean sun and the position 
of the true sun. 

The analemma is a direct consequence of the 
equation of time. The deviation in position of the true 
sun from the mean sun at a given time on each day of 
the year is provided in the equation of time graph in 
units of time. It however takes an intuitive leap to be 
able to mentally transform the equation of time into 
the analemma, as the relationship is quite complicated.

Figure 7 simulates how the analemma is a physical 
representation of the equation of time. The equation 
of time has been scaled to the same axes as the 
analemma, but the significant points of the equation 
of time, such as the peaks and zeros, occur at the 
correct timing. When the equation of time graph is 
negative, the true sun is moving longitudinally behind 
the mean sun and the left section of this particular 
analemma is formed. When the equation of time is 
positive, the sun is longitudinally ahead of the mean 
sun and the right portion of this analemma is formed. 

Figure 6. Equation of time.
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At this moment, the true sun is seen to be west of 
the mean sun. The height of the peaks and the depth 
of the troughs determine the ‘width’ of each section 
of the analemma, hence the largest peak and trough 
correspond to the bottom section of the analemma. 
This is where there is the greatest time difference 
between the true and mean suns and so the true sun is 
longitudinally furthest from the mean sun.

2D Modelling

Two-dimensional models of the analemma involve 
some form of projection of the analemma as shown on 
the celestial sphere to a plane. The projection involved 
in this section maps great circles on the celestial sphere 
to lines and neither area nor distance is conserved. 
Azimuth and altitude angles are simply given on a 
linear scale. Unlike latitude and longitude, azimuth 
and altitude angles are relative to the position of the 

observer. Altitude angle ranges from 0 degrees on the 
horizon to 90 degrees at the zenith and is considered 
negative if the object is below the horizon. Azimuth 
angle is determined to be 0 degrees at due north, 90 
degrees at due east, 180 degrees at due south and 270 
degrees at due west.

To produce figures of the analemma, one must 
plot altitude against azimuth angle for the position of 
the sun at each day over the course of a year. Given 
latitude of the observer , longitude of the observer 
Ȝ, declination į and hour angle H, azimuth angle A 
and altitude angle h are generated by the proceeding 
equations (Meeus, 1998) (Teo, 2002). 

January to March April to June

July to September October to December

Figure 7. Simulation of a noon analemma and the equation of time.
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where � �1sin 23.45sinG O� .

The hour angle H is given by the following 
equation, where x is the number of hours after noon 
using mean solar time (12pm in Greenwich).

The equation of time outputs time in units of 
fraction of a day and so this is multiplied by 24 to 
convert to hours. The summation of mean solar time 
and the equation of time give the true solar time. This 
is multiplied by 15 as the sun moves 15 degrees per 
hour. Here, the equation of time is used to ‘correct’ 
the time as measured by a clock (mean solar time) to 
true solar time, and hence the position of the true sun.

Once the altitude and azimuth of the analemma 
have been calculated, they can be simply plotted 
on a two-dimensional plane. However, a similar 
problem occurs here as when latitude and longitude 
of geographical locations are plotted on a map, as 
analemmas found in high altitude angles become 
extremely distorted.

One useful piece of information gleaned from these 
figures is the values for altitude and azimuth angle 
of the analemma. The absolute angular difference 
between the end of the ‘top’ loop and the end of the 
‘bottom’ loop of the figure eight shape is always 23.45° 
+ 23.45° = 46.9°. This is because the declination of the 
sun varies from +23.45° to –23.45° over one year.

3D Modelling

A parametrisation of a sphere can be given by:

where r is the radius of the sphere and u,v 0,2] ࣅπ).

Using this parametrisation, the two-dimensional 
models in the previous section can be placed on a 
sphere of radius r = 1, where v is the altitude angle h, 
and u is the azimuth angle A at a given time t, latitude 
.and date D 

It then follows that a parametrisation for the 
analemma curve at a given time t and latitude  would 
be:

where D ࣅ�[D0, D0+365].

This parametrisation will be used to create three-
dimensional models by projecting the position of the 
sun as given in azimuth and altitude angles onto a 
sphere. 

Astronomical maps and star charts generally present 
the northern or southern skies from a viewpoint at the 
opposite pole on the celestial sphere. This is practical 
because an entire hemisphere can be seen in one image 
while the azimuth and altitude angles of celestial bodies 
can easily be read from the chart. The analemma can 
also be presented in the manner in order to represent 
its position in the sky for a viewer at a given latitude. 
In Figure 9, the hemisphere is concave and so we are 

� � 15 EquationOf Time[Date] 24H x � u

Morning Noon

Figure 8: Two-dimensional analemmas at 38°18’N.
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Figure 9: View from below at 20°N.
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viewing the sky from the ‘inside’. 

These images are beneficial as they give a clear 
indication of where the analemma is to be found in 
the sky at a certain time of day. It is important to 
notice that east is on the left-hand side because the 
observer is looking upwards at the sky, not downwards 
onto a map. In the above right figure, the analemma is 
located in the west, and so it is an afternoon analemma 
(in this case 3pm). We see that the sun spends most of 
the year in the southern sky, and so the observer must 
be in the northern hemisphere (in this case 20 degrees 
north). 

A significant problem with such graphics is 
that the viewing point is from the opposite end 
of the celestial sphere. The human eye cannot see a 
complete 360-degree view whilst focusing on the 
zenith. Creating such an image in Mathematica is 
only possible by taking the viewpoint to be a location 
outside the interior region of the celestial hemisphere, 
in this case at the opposite pole of the celestial sphere. 
It is quite unnatural to look upwards at the sun during 
the daytime in this manner, as usually we notice the 
sun with respect to the horizon. In these graphics, 
points below the horizon are simply omitted and so 
there is little scope for depiction of events such as 
sunset and sunrise. When the sun nears the horizon, 
the skewing of images becomes most drastic and 
therefore such a viewing point is only practical when 
the sun is overhead. 

By dissecting the celestial sphere through the zenith, 
the horizon becomes better depicted graphically and 
can be used as a reference point. This seems to be a 
more natural depiction of the analemma. Such images 
may be most useful for explaining the relationship 
between the analemma and sunrise and sunset. As this 
analemma is viewed from a latitude in the southern 
hemisphere, the figure eight shape is inverted. 

 
In the three-dimensional hemispherical model 

on the left of Figure 10, distortion occurs along the 
boundary of the hemisphere, where the analemma is 
furthest from the viewing centre. This is a result of 
the optical distortion of objects far from the point of 
focus. The only way to view an object correctly is to 
look directly at it. By looking directly at the analemma, 
as shown in the below figure, the analemma appears 
less distorted. Although this viewing point is still 
inaccurate, because it is at a location on the celestial 
sphere and not on the earth, it significantly improves 
the appearance of the shape of the analemma. The 
analemma appears relatively straight and the distortion 
evident in the left figure is corrected.

The following series of images in Figure 11 show 
the analemmas as they would be viewed from the 
earth. The view vector is from the centre of the sphere 
(the earth) to the centre of the analemma (position 

of the mean sun). These graphics of the analemma 
bear the strongest resemblance to photographs of the 
analemma taken from earth and are both realistic and 
accurate. The azimuth and altitude angles of the mean 
sun are marked in brackets at the location of the mean 
sun at the given time and latitude.

10am view from the horizon at 20°S

Rotated 10am view at 20°S

Figure 10: Analemma viewed from different 
perspectives on the celestial sphere.

9am 12pm 3pm

Figure 11: Corrected viewpoint at 30°N.
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Case Studies 
 
Sunrise in Singapore

Correct and realistic viewing of the analemma 
assists in explaining related phenomena accurately 
such as the varying sunrise times in Singapore. As 
Singapore lies near the equator (1°22’N), an early 
morning analemma appears horizontal. Sunrise times 
in Singapore range from around 6:45am to 7:15am, 
although there is only about eight minutes variation 
between the length of the shortest and longest day 
(Aslaksen, 2012). Figure 12 shows the shape of the 
analemma at 7am in Singapore. Azimuth and altitude 
angles are marked in order to estimate the width and 
the height of the analemma.

The angular distance between the highest and lowest 
azimuth angle of the analemma is approximately 
47 degrees (23.45° + 23.45°). The angular distance 
between highest and lowest altitude angle of the 
analemma is approximately 7.5°. The sun travels 
15 degrees every hour, so the 7.5-degree variation 
between the highest and lowest altitude angle on the 
analemma implies a 30-minute variation in sunrise 
time. The points of earliest and latest sunrise on the 
analemma correspond to around November 3 and 
February 10 respectively.

The Analemma in Athens

In order to photograph the analemma, a camera 
must be carefully positioned such that the camera’s 
frame is wide enough to capture all possible locations 
of the sun at a particular time of day. The sun is then 
captured at a specific time of day over a period of one 
year. A vertical analemma occurs at mean solar noon, 
the mean time of when the sun crosses the celestial 
meridian over one year. Photographer Anthony 
Ayiomamitis has captured numerous images of the 

analemma in Athens, which are depicted in Figure 13. 

In the above centre figure, Ayiomamitis attempted 
to capture a perfectly straight analemma occurring at 
mean solar noon. Unlike in Greenwich, mean solar 
noon does not occur at around 1200, rather at some 
time between 1200 and 1300, due to Athens’ position 
within a time zone boundary. 

The earth rotates at an average velocity of 1/15 
hours per degree. The photographs are recorded to 
have been taken at 23.7340 degrees longitude, so 
the actual time zone of Athens should be 24/360 × 
23.7340 = +1.583 hours. As Athens is technically in 
UTC+2, 2 – 1.583 = 0.417 hours or 25 minutes and 2 
seconds should be subtracted from times given under 
the time zone UTC+2. Mean solar noon in Athens 
should occur at 12:25.2pm UTC+2. Interestingly, 
Ayiomamitis’ photograph of the noon analemma was 
taken at 12:28.16pm UTC+2. The reason behind this 
is that the position of the analemma in the sky varies 
annually. The Gregorian calendar year approximates 
the time taken for the earth to revolve around the sun 
and every four years, a correction is in the form of a 
leap year. A more accurate way to calculate the mean 
solar time for a particular location in a particular 

Figure 12: Sunrise in Singapore.

Hephaisteion, 10am Parthenon, 12:28.16pm 

Erechtheion, 3pm

Image Data

Photographer: Anthony 
Ayiomamitis
Latitude: 38.29997°N
Longitude: 23.7430°N
Time zone: UTC+2
Dates recorded: January 7, 
2003 to December 20, 2003 
(10am and 3pm analemma), 
January 12, 2002 to 
December 21, 2002 
(12:28.16pm analemma)

Figure 13: The Analemma in Athens (Ayiomamitis, 
2001-11).
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year is to calculate the time of day where the sun at 
the summer solstice and winter solstice would have 
the same azimuth angle. Indeed this is the method 
used by Ayiomamitis, and he found this to occur at 
12:28.16pm. 

After corrections are made for the time zone in 
which the images were taken, models made using 
Calendrica should strongly resemble the photographs 
of the analemma. Specifically, the shape and angle of 
the analemma in the models and the photographs 
should be the same, if the camera in the photographs 
is approximately pointing towards the position of the 
mean sun. They are depicted in Figure 14.

Although the photograph of the vertical analemma 
is replicated almost perfectly in the model, the 
morning and afternoon analemma models are both 
positioned at greater angles to the horizon than the 
photographs of the analemma at these times. There 
seems to be some systematic error in the assumptions 
made when creating the models. The accuracy of the 
noon analemma implies that the time corrections 
and the longitude of the photographer are correct. If 
the photographer were at a higher latitude, then the 
analemma would possess a greater angle at 10am and 
3pm. The latitude provided by the photographer is, 
however, likely to be correct. A much more likely issue 
in matching the models to the photographs is the line 
of sight of the camera. If the camera is not positioned 
towards the mean sun, then numerous visual effects 
can affect the shape and angle of the analemma. The 
camera presumably corrected for visual distortions by 
using a rounded lens, but it is difficult to determine 
how the camera may change the angle of the analemma.

We can direct the viewing vector in the model at 
another point in the sky so that the analemma appears 

at the correct angle. However, we can also change the 
viewing vector such that the analemma appears in 
many desired forms. To proceed with modifying the 
viewing direction in the programmatic figure is not 
very useful unless more information is acquired about 
the direction in which the camera is pointing and the 
camera’s mechanisms for correcting visual distortions.

In Figure 15, the ‘X’ marks the location of the 
direction of the adjusted viewing vector. By shifting 
the angle of the viewing vector to some point a few 
degrees east of the mean sun in the above left figure 
and to some azimuth angle a few degrees west of the 
mean sun in the above right figure, the angle of the 
analemma changes in such a way that it approximately 
matches the photographs. This does not necessarily 
mean that Ayiomamitis’ camera was pointed in these 
directions, as a camera lens may also adjust the angle 
of the analemma.

Conclusion
Many astronomical phenomena can be explained 

with typical models, such as the celestial sphere as 

Hephaisteion, 10am Parthenon, 12:28.16pm Erechtheion, 3pm

Figure 14. Model testing.

Figure 15: Adjusting the viewing direction.
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seen from an external perspective or two-dimensional 
projections. An external view of the celestial sphere is 
useful for understanding orbital motions, such as the 
revolution of the earth around the sun, whereas the 
declination of the sun at different times throughout 
the year can be better depicted from inside the 
celestial sphere. When projecting the celestial sphere 
onto a plane, different projections should be used 
depending on whether lengths, area, or shape should 
be conserved. Often it is simpler and more accurate 
to depict three-dimensional phenomena on three-
dimensional axes. The way in which objects appear 
depends on the viewer’s line of sight. In order to 
minimise visual distortions and see an object correctly, 
it is essential to look directly at the object.

By modelling the analemma using programmable 
figures, it is possible to see how the analemma appears 
at different parts of the world at different times of the 
day. There are various ways to depict the analemma, 
but the most useful way to depict the analemma is 
realistically and accurately. The analemma is a three-
dimensional phenomenon seen from the earth. Good 
models of the analemma must therefore be presented 
on three-dimensional axes and be viewed from the 
centre of the celestial sphere. View point and line 
of vision can significantly affect how the analemma 
appears in programmatic figures, even when the 
model is scientifically correct. Realistic and accurate 
models of the analemma should resemble photographs 
of the analemma. Through comparing models of the 
analemma in Athens with Ayiomamitis’ photography, 
the shape of the models is shown to be accurate.

The angle of the analemma in the models closely 
matches that in the photographs, in which the 
discrepancy is possibly due to the inability to view 
the models in the same direction in which the camera 
is pointing. The appearance of the analemma is 
dependent on the location and line of sight of the 
viewer, be it from outside, on or inside the celestial 
sphere. In this project, the most useful depictions were 
those that viewed the centre of the analemma from 
a viewing point on the earth. These models closely 
reflect how we would see the analemma from our 
location and assist in explaining the irregular path of 
the sun at the same time of each day throughout each 
year.
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